國立中正大學八十三學年度碩士班考試試題

所 别:化學工程研究所

科 目:工程數學

P.

1. Reversible reactions, $A + A \longleftrightarrow B$, taking place in a CSTR can be described by the following differential equations:

$$V\frac{da}{dt} = Q(a_0 - a) - Vk_1 a^2 + Vk_2 b \tag{1a}$$

$$V\frac{db}{dt} = -Qb + Vk_1a^2 - Vk_2b \tag{1b}$$

where V is the reactor volume, Q is the flow rate, k_1 and k_2 are rate constants, a_0 is the input concentration of A, and a and b are concentrations of A and B, respectively.

(a) Show that Equations (1a) and (1b) can be transformed into the following dimensionless equations: (3A)

$$\frac{dx_1}{d\tau} = 1 - x_1 - \alpha_1 x_1^2 + \alpha_2 x_2 \tag{1c}$$

$$\frac{dx_2}{d\tau} = -x_2 + \alpha_1 x_1^2 - \alpha_2 x_2 \tag{1d}$$

by introducing the dimensionless variables $x_1 = a/a_0$, $x_2 = b/a_0$, $\tau = tQ/V$, $\alpha_1 = Vk_1a_0/Q$, and $\alpha_2 = Vk_2/Q$.

(b) Let the deviation equation of Eqs. (1c) and (1d) be defined by

$$\frac{d\underline{x}}{d\tau} = \underline{J} \, \underline{x}, \qquad \underline{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \qquad \underline{J} = \begin{bmatrix} -1 - 2\alpha_1 & \alpha_2 \\ 2\alpha_1 & -1 - \alpha_2 \end{bmatrix}$$
 (1e)

Prove that the system described by Eq. (1e) is stable. (35)

(Note: A system is said to be stable if all eigenvalues of the system matrix have negative real parts)

- (c) For $\alpha_1 = 1$ and $\alpha_2 = 2$, the matrix \underline{J} in Eq. (1e) is symmetric and its two eigenvectors are orthogonal to each other. Show that if λ_i and λ_j are two different eigenvalues of a real symmetric matrix \underline{A} , then the associated eigenvectors \underline{u}_i and \underline{u}_j are othogonal to each other, i.e. $\underline{u}_i \cdot \underline{u}_j = 0$. (65)
- 2. Let $(t_i, x_i), i = 1, 2, \dots, N$, be a sequence of data recorded from an experiment. Find the optimal parameters α and β in the linear model $x(t) = \alpha t + \beta$ such that the sum of squared errors, $J = \sum_{i=1}^{N} (x_i x(t_i))^2$ is minimized. (Hint: the optimal α and β can be found by letting $\partial J/\partial \alpha = \partial J/\partial \beta = 0$) (5 $\frac{1}{2}$)
- 3. (a) Find the solution y(x) of the initial-value problem (7%)

$$(x+a)^2 \frac{d^2y}{dx^2} - 4(x+a)\frac{dy}{dx} + 6y = 0, y(0) = 0, \frac{dy(0)}{dx} = 1 (3)$$

- (b) Find the maximum of y(x). (35)
- 4. Consider the ordinary differential equation

$$\frac{d\underline{x}}{dt} = \underline{J} \, \underline{x}, \qquad \underline{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \qquad \underline{J} = \begin{bmatrix} 2 & 1 & 2 \\ -1 & 0 & -2 \\ k & 0 & 1 \end{bmatrix} \tag{4}$$

- (a) Find the eigenvalues of \underline{J} . (2 $\frac{1}{2}$)
- (b) If k = 0, find the eigenvalues and the associated eigenvectors of \underline{J} , and then find the general solution of the differential equation in Eq. (4). (65)
- 5. (a) The continuity equation for fluid flow is given by

$$\frac{\partial \rho}{\partial t} = -(\nabla \cdot \rho \underline{v}), \qquad \underline{v} = \begin{pmatrix} u \\ v \end{pmatrix} \tag{5}$$

(續下頁)

其二頁

立中正大學八十三學年度碩士班考試試題

别:化學工程研究所 所

目: 工程數學

Pz

Show that a stream function $\Psi(x,y)$ can be defined such that $\partial u/\partial x = -\partial \Psi/\partial y$ and $\partial v/\partial y = \partial \Psi/\partial x$ for twodimensional incompressible flow (ρ is constant). (5/ $\frac{1}{2}$)

- (b) What are Stokes and Divergence theorems? What are their importance in the study of chemical engineering ి (అస్ట్)
- 6. Consider the integral of $f(z) = e^{-z^2}$ over a closed rectangular path C shown in Fig. 1.

Fig. 1. (A, a) (A, a) (A, a) (A, a) (A, a) (A, a) (A, a)

(a) Show that (37) $\int_{-A}^{+A} e^{-x^2} dx + \int_{-A}^{+A} e^{-(x+ia)^2} dx + \int_{S_1} e^{-z^2} dz + \int_{S_2} e^{-z^2} dz = 0, \quad i = \sqrt{-1}$ (6a)

where S_1 is the line segment from (A,0) to (A,a) and S_2 is the line segment from (-A,a) to (-A,0).

(b) Show that, on both
$$S_1$$
 and S_2 , $(3\frac{\epsilon}{\delta})$

$$|e^{-\epsilon^2}| = e^{-(A^2 + u^2)} \le e^{-(A^2 + u^2)}$$
(6b)

Note that the lengths of S_1 and S_2 are equal to a.

- (c) Show that the integrals $\int_{S_1} e^{-z^2} dz$ and $\int_{S_2} e^{-z^2} dz$ tend to zero as $A \to \infty$ for any fixed value of a. (35)
- (d) Show that (3分)

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \int_{-\infty}^{\infty} e^{-(x-y_0)^2} dx \tag{6c}$$

7. (a) Show that (4分)

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(z^2+y^2)} dx dy = \pi \tag{7a}$$

(b) Show that (35)

$$\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2} \tag{7b}$$

- (c) The Fourier transform of a function f(t) is defined by $\int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$, $i=\sqrt{-1}$. Find the Fourier transform of $e^{-t^2/2}$ (35)
- 8. The gamma function $\Gamma(\alpha)$, $\alpha > 0$, is defined by the integral

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt \tag{8}$$

- (a) Show that $\Gamma(k+1) = k!, \ k = 0, 1, 2, \cdots$ (4.7)
- (b) Show that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. (45)

(Note: You can use the results of previous problems)

9. Use the Laplace transform to find the solution z(x,t) of the problem

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial t} = z, \qquad z(0, t) = 1, \quad z(x, 0) = 1$$
 (9)

where $0 \le x < \infty$ and $0 \le t < \infty$.